

几丁质酶试剂盒说明书

(货号: BP10300F 分光法 24 样 有效期: 3 个月)

一、产品简介:

多种微生物、动物、植物等都可产生几丁质酶, 高等植物本身不存在作为真菌细胞壁组分之一的几丁质, 但当植物受到病原菌感染时, 几丁质酶活性迅速提高。因此该酶与植物对病原微生物的抗性有关, 是重要的病程相关蛋白。

几丁质酶主要水解几丁质多聚体中β-1,4-糖苷键,在蜗牛酶的作用下全部水解为 N-乙酰氨基葡萄糖单体,进一步与铁氰化钾反应,于 420nm 处检测,进而计算得到几丁质酶活性大小。

二、试剂盒组分与配制:

试剂名称	规格	保存要求	备注
提取液	液体 30mL×1 瓶	4℃避光保存	
试剂一	液体 7mL×1 瓶	4℃避光保存	
试剂二	粉体1瓶	4℃避光保存	1. 开盖前注意使粉体落入底部 (可手动甩一甩); 2. 加入 2.5mL 盐酸 充分混匀溶解 后; 3. 再加 2.8mL 蒸馏水混匀备用; 4. 保存周期与试剂盒有效期相 同。
试剂三	粉体1支	4℃保存	1. 开盖前注意使粉体落入底部 (可手动甩一甩); 2. 加入1.2mL蒸馏水溶解备用; 3. 保存周期与试剂盒有效期相 同。
试剂四	液体 8mL×1 瓶	4℃保存	
试剂五	液体 5mL×1 瓶	4℃避光保存	
试剂六	粉体1瓶	4℃保存	1. 开盖前注意使粉体落入底部 (可手动甩一甩); 2. 加入30mL蒸馏水溶解备用; 3. 保存周期与试剂盒有效期相 同。
标准品	粉剂 1 支	4℃避光保存	 若重新做标曲,则用到该试剂; 按照说明书中标曲制作步骤进行配制; 溶解后的标品一周内用完。

三、所需的仪器和用品:

研钵(匀浆机)、冰盒(制冰机)、台式离心机、可调式移液枪、水浴锅(烘箱、培养箱、金属浴)、 1ml 比色皿、离心管、分光光度计、盐酸、蒸馏水(去离子水、超纯水均可)。

四、指标测定:

建议实验前选2个样本做预测定,了解样品情况,熟悉实验流程,避免样本和试剂浪费!

1、样本制备:

- ① 组织样本: 称取约 0.1g 组织, 加入 1mL 提取液, 进行冰浴匀浆, 于 4℃, 12000rpm 离心 10min, 取上清置冰上待测。
- ② 真菌样本: 先收集细胞到离心管内, 离心后弃上清; 取 500 万细胞加入 1mL 提取液; 冰浴超声波

网址: www.bpelisa.com

破碎细胞(功率 300w,超声 3 秒,间隔 7 秒,总时间 3min);于 4 °C,12000rpm 离心 10min,取上清置于冰上待测。

【注】:若增加样本量,可按照提取液(mL):细细胞数量(10^4)为 1: $500\sim1000$ 的比例进行提取

③ 液体样本:直接检测;若浑浊,离心后取上清检测。

2、上机检测:

- ① 分光光光度计预热 30min 以上,调节波长至 420nm,蒸馏水调零。
- ② 在 EP 管中依次加入:

- 1 10 × 10 m					
试剂名称 (μL)	测定管	对照管			
样本	80				
煮沸样本		80			
试剂一	100	100			
试剂二	100	100			
混匀, 37℃ (恒温培养箱) 孵育 1.5h, 4000rpm 离心 5min, 取上清					

③ 在 EP 管中依次加入:

上清液	200	200			
试剂三	20	20			
试剂四	150	150			
混匀, 37℃孵育 1h					
试剂五	100	100			
混匀,4000rpm 离心 5min,取上清液待测,					

④ 在 EP 管中依次加入:

上清液	360	360
试剂六	480	480
退勺 05 100℃	Omin 取合或流体至 1	mI 比名皿由王 420nm

混匀, 95-100°C煮沸 10min, 取全部液体至 1mL 比色皿中于 420nm 处读取各管吸光值 A, ΔA = A 对照-A 测定 (每个样本做一个对照)。

- 【注】1. 煮沸的样本: 取出部分上清液于 95-100℃煮沸 10min, 使样本里面的酶失去活性。
 - 2. 若 ΔA 较小,可以加大样本量(如增至 $120\mu L$,则试剂一相应减少),或增加样本取样量(如 0.2g),则 改变后的 V1 和样本 W 需代入公式重新计算。

五、结果计算:

1、标准曲线方程: y = 0.0255x - 0.0128, X 是标准品质量 (μg), $y = \Delta A$.

2、按照样本重量计算:

定义: 每克组织每小时分解几丁质产生 $1\mu gN$ -乙酰氨基葡萄糖的酶量为一个单位。 几丁质酶活($\mu g/h/g$ 鲜重)=[($\Delta A+0.0128$)÷ 0.0255×1.83]÷($V1\div V\times W$)÷T=598×($\Delta A+0.0128$)÷W 3、按照蛋白质浓度计算:

网址: www.bpelisa.com

定义: 每毫克蛋白每小时分解几丁质产生 1µgN-乙酰氨基葡萄糖的酶量为一个单位。

几丁质酶活(μ g/h/mg prot)=[(Δ A+0.0128)÷0.0255×1.83]÷(V1×Cpr)÷T=598×(Δ A+0.0128)÷Cpr

4、按细胞数量计算:

定义:每10⁴个细胞每小时分解几丁质产生1µgN-乙酰氨基葡萄糖的酶量为一个单位。

几丁质酶活(μ g/h/ 10^4 cell)=[(Δ A+0.0128)÷0.0255×1.83]÷(V1÷V×细胞数量)÷T

=598×(ΔA+0.0128)÷细胞数量

5、按照液体体积计算:

定义: 每毫升液体每小时分解几丁质产生 1µgN-乙酰氨基葡萄糖的酶量为一个单位。

几丁质酶活(μ g/h/mL)=[(Δ A+0.0128)÷0.0255×1.83]÷V1÷T=598×(Δ A+0.0128)

V---提取液体积, 1mL; V1---样本体积, 0.08mL; T---反应时间, 1.5h;

W---样本质量, g; 1.83---体积系数; 标准品分子量---221.21;

Cpr---样本蛋白浓度,mg/mL,建议使用本公司的 BCA 蛋白含量检测试剂盒。

附:标准曲线制作过程:

1 标准品临用前加 2mL 蒸馏水,标准品母液浓度为 1mg/mL。将母液用蒸馏水稀释成六个浓度梯度的标准品,例如: 0,0.02,0.04,0.06,0.08,0.1mg/mL。也可根据实际样本调整标准品浓度。

2 标品稀释参照表如下:

13 He 14 11 2 300 2300 1						
吸取标准品母液 200uL,加入 1800uL 蒸馏水,混匀得到 0.1mg/mL 的标品稀释液待用。						
标品浓度	0	0.02	0.04	0.06	0.08	0.1
mg/mL	0	0.02	0.04	0.00	0.08	0.1
标品稀释液	0	80	160	240	320	400
uL	0	80	100	240	320	400
水 uL	400	320	240	160	80	0
各标准管混匀待用。						

3 依据加样表操作,根据结果,以各浓度吸光值减去0浓度吸光值,过0点制作标准曲线。

试剂名称(μL)	标准管	0 浓度管(仅做一次)
标品	360	
蒸馏水		360
试剂六	480	480

混匀, 95-100℃煮沸 10min, 取全部液体至 1mL 比色皿中于 420nm 处读取各管吸光值 A, △A=A 测定-0 浓度管。

网址: www.bpelisa.com